高二量向公式總結
總結是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,通過它可以全面地、系統地了解以往的學習和工作情況,因此十分有必須要寫一份總結哦。那么總結要注意有什么內容呢?下面是小編收集整理的高二量向公式總結,供大家參考借鑒,希望可以幫助到有需要的朋友。
高二量向公式總結
1.單位向量:單位向量a0=向量a/|向量a|
2.P(x,y)那么向量OP=x向量i+y向量j
|向量OP|=根號(x平方+y平方)
3.P1(x1,y1)P2(x2,y2)
那么向量P1P2={x2-x1,y2-y1}
|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=|向量a|*|向量b|*Cos=x1x2+y1y2
Cos=向量a*向量b/|向量a|*|向量b|
(x1x2+y1y2)
根號(x1平方+y1平方)*根號(x2平方+y2平方)
5.空間向量:同上推論
(提示:向量a={x,y,z})
6.充要條件:
如果向量a向量b
那么向量a*向量b=0
如果向量a//向量b
那么向量a*向量b=|向量a|*|向量b|
或者x1/x2=y1/y2
7.|向量a向量b|平方
=|向量a|平方+|向量b|平方2向量a*向量b
=(向量a向量b)平方
空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。
量向分層抽樣
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。
2.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的.樣本分別代表該子總體,所有的樣本進而代表總體。
分層標準
(1)以調查所要分析和研究的主要變量或相關的變量作為分層的標準。
(2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變量作為分層變量。
(3)以那些有明顯分層區分的變量作為分層變量。
分層的比例問題
(1)按比例分層抽樣:根據各種類型或層次中的單位數目占總體單位數目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數據資料進行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實際的比例結構。
向量的概念、向量的基本定理
【內容解讀】了解向量的實際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對向量概念的理解,向量是可以自由移動的,平移后所得向量與原向量相同;兩個向量無法比較大小,它們的模可比較大小。
向量的運算
【內容解讀】向量的運算要求掌握向量的加減法運算,會用平行四邊形法則、三角形法則進行向量的加減運算;掌握實數與向量的積運算,理解兩個向量共線的含義,會判斷兩個向量的平行關系;掌握向量的數量積的運算,體會平面向量的數量積與向量投影的關系,并理解其幾何意義,掌握數量積的坐標表達式,會進行平面向量積的運算,能運用數量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關系。
【命題規律】命題形式主要以選擇、填空題型出現,難度不大,考查重點為模和向量夾角的定義、夾角公式、向量的坐標運算,有時也會與其它內容相結合。
定比分點
【內容解讀】掌握線段的定比分點和中點坐標公式,并能熟練應用,求點分有向線段所成比時,可借助圖形來幫助理解。
【命題規律】重點考查定義和公式,主要以選擇題或填空題型出現,難度一般。由于向量應用的廣泛性,經常也會與三角函數,解析幾何一并考查,若出現在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
考點四:向量與三角函數的綜合問題
【內容解讀】向量與三角函數的綜合問題是高考經常出現的問題,考查了向量的知識,三角函數的知識,達到了高考中試題的覆蓋面的要求。
【命題規律】命題以三角函數作為坐標,以向量的坐標運算或向量與解三角形的內容相結合,也有向量與三角函數圖象平移結合的問題,屬中檔偏易題。
考點五:平面向量與函數問題的交匯
【內容解讀】平面向量與函數交匯的問題,主要是向量與二次函數結合的問題為主,要注意自變量的取值范圍。
【命題規律】命題多以解答題為主,屬中檔題。
考點六:平面向量在平面幾何中的應用
【內容解讀】向量的坐標表示實際上就是向量的代數表示.在引入向量的坐標表示后,使向量之間的運算代數化,這樣就可以將“形”和“數”緊密地結合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉化為大家熟悉的代數運算的論證.也就是把平面幾何圖形放到適當的坐標系中,賦予幾何圖形有關點與平面向量具體的坐標,這樣將有關平面幾何問題轉化為相應的代數運算和向量運算,從而使問題得到解決.
【命題規律】命題多以解答題為主,屬中等偏難的試題。
向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x,y+y)。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點,指向被減”
a=(x,y) b=(x,y) 則 a-b=(x-x,y-y).
數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對于任意實數λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
向量的的數量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a·b=x·x+y·y。
向量的數量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數量積的性質
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
【高二量向公式總結】相關文章:
電場公式總結06-08
初三的物理公式電學公式總結人教版03-19
正弦函數公式總結09-14
高中物理公式總結之功和能轉化公式03-19
物理常見的力公式總結01-17
有關磁場必備公式總結01-18
初中物理功率公式總結04-22
平方差公式總結09-22
初中物理電功公式總結01-04
高一物理公式總結01-27